536
34 Agri and Food Waste Valorization Through the Production of Biochemicals and Packaging Materials
55 Escamilla-Alvarado, C., Vazquez-Barragán, J.A., Ponce-Noyola, M.T. et al.
(2011). A novel biorefinery approach for biofuels and holocelullolytic enzymes
production from organic wastes. In: Bioremediation and Sustainable Environ-
mental Technologies-2011. Battelle First International Symposium on Bioremedi-
ation and Sustainable Environmental Technologies (eds. G.B. Wickramanayake
and H. Rectanus) Reno, NV, USA. Columbus, OH, USA: Battelle.
56 Abu Yazid, N., Barrena, R., Komilis, D. et al. (2017). Solid-state fermentation as
a novel paradigm for organic waste valorization: a review. Sustainability 9 (2):
224.
57 Mussatto, S.I., Dragone, G., and Roberto, I.C. (2006). Brewers’ spent grain: gen-
eration, characteristics and potential applications. Journal of Cereal Science 43:
1–14.
58 Hassona, H.Z. (1993). High fibre bread containing brewer’s spent grains and its
effect on lipid metabolism in rats. Food/Nahrung 37: 576–582.
59 Ktenioudaki, A., Crofton, E., Scannell, A. et al. (2013). Sensory properties and
aromatic composition of baked snacks containing brewer’s spent grain. Journal
of Cereal Science 57: 384–390.
60 Gawlik-Dziki, U., Kaszuba, K., Piwowarczyk, K. et al. (2015). Onion skin – raw
material for the production of supplement that enhances the health-beneficial
properties of wheat bread. Food Research International 73: 97–106.
61 Seidu, K.T., Osundahunsi, O.F., Olaleye, M.T. et al. (2015). Amino acid com-
position, mineral contents and protein solubility of some lima bean (Phaseolus
lunatus Walp) seeds coat. Food Research International 73: 130–134.
62 Ong, K.L., Kaur, G., Pensupa, N. et al. (2017). Trends in food waste valoriza-
tion for the production of chemicals, materials and fuels: case study South and
Southeast Asia. Bioresource Technology https://doi.org/10.1016/j.biortech.2017.06
.076.
63 Torri, I.D.V., Paasikallio, V., Faccini, C.S. et al. (2016). Bio-oil production of
softwood and hardwood forest industry residues through fast and intermediate
pyrolysis and its chromatographic characterization. Bioresource Technology 200:
680–690.
64 Santos, J., Ouadi, M., Jahangiri, H. et al. (2019). Integrated intermediate cat-
alytic pyrolysis of wheat husk. Food and Bioproducts Processing 114: 23–30.
65 Bridgwater, A.V. (2012). Upgrading biomass fast pyrolysis liquids. Environ-
mental Progress & Sustainable Energy 31: 261–268. https://doi.org/10.1002/ep
.11635.
66 Elliott, D.C., Biller, P., Ross, A.B. et al. (2015). Hydrothermal liquefaction of
biomass: developments from batch to continuous process. Bioresource Technol-
ogy 178: 147–156.
67 Yung, M.M., Jablonski, W.S., and Magrini-Bair, K.A. (2009). Review of catalytic
conditioning of biomass-derived syngas. Energy & Fuels 23: 1874–1887.
68 Jahangiri, H., Bennett, J., Mahjoubi, P. et al. (2014). A review of advanced cata-
lyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass
derived syn-gas. Catalysis Science and Technology 4: 2210–2229.